子段求和

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1081

给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和。
例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1。3 + 7 + 9 = 19,输出19。

Input

第1行:一个数N,N为数组的长度(2 <= N <= 50000)。
第2 至 N + 1行:数组的N个元素。(-10^9 <= N[i] <= 10^9)
第N + 2行:1个数Q,Q为查询的数量。
第N + 3 至 N + Q + 2行:每行2个数,i,l(1 <= i <= N,i + l <= N)

Output

共Q行,对应Q次查询的计算结果。

Input示例

5
1
3
7
9
-1
4
1 2
2 2
3 2
1 5

Output示例

4
10
16
19

分析:

树状数组模版题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;

public class Main {
public static void main(String[] args) throws IOException {
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
in.nextToken();
int N = (int) in.nval;
BinaryIndexedTree tree = new BinaryIndexedTree(N);
for (int i = 1; i <= N + 1; i++) {
in.nextToken();
int a = (int) in.nval;
tree.put(i, a);
}
int Q = (int) in.nval;
for (int i = 0; i < Q; i++) {
in.nextToken();
int k = (int) in.nval;
in.nextToken();
int l = (int) in.nval;
out.println(tree.sum(k + l - 1) - tree.sum(k - 1));
}
out.flush();
}

static class BinaryIndexedTree {
int length;
long[] tree;

BinaryIndexedTree(int length) {
this.length = length;
tree = new long[length + 1];
}

void put(int index, int value) {
while (index <= length) {
tree[index] += value;
index += lowBit(index);
}
}

static int lowBit(int k) {
return k & -k;
}

long sum(int index) {
long sum = 0;
while (index > 0) {
sum += tree[index];
index -= lowBit(index);
}
return sum;
}
}
}
Author

Zoctan

Posted on

2018-03-14

Updated on

2023-03-14

Licensed under